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The magnetohydrodynamic evolution of axisymmetric magnetic eddies within which
the magnetic field is purely toroidal with Bθ/r piecewise-constant, and the velocity
field is poloidal, is studied both analytically and numerically. A family of exact
solutions, generalizing Hill’s spherical vortex to the case of non-zero magnetic field,
is found. These exact solutions are (like Hill’s vortex) unstable, so that, under weak
disturbance, a narrow spike of vorticity is shed from the neighbourhood of the rear
stagnation point. Numerical simulation using a contour-dynamics formulation shows
that, for general initial contour shape, a contour singularity appears at a finite time
t∗, like that which appears on a disturbed vortex sheet. Techniques of regularization
and sample-point redistribution are used so that the eddy contours can be tracked
well beyond t∗. When the fluid is initially at rest, the magnetic eddy first contracts
towards the axis of symmetry under the action of its Lorentz force distribution; then
two spherical fronts form, which propagate in the two opposite directions along the
axis of symmetry, in a manner captured well by the exact solution. The magnetic
energy remains bounded away from zero despite the fact that there is no topological
barrier to its further decrease. Magnetic eddy evolution and the possible existence of
steady states under a uniform compressive strain field is also numerically investigated.

1. Introduction
A problem of fundamental interest in magnetohydrodynamics (MHD) has been

posed by Moffatt (1985): suppose that at some initial instant, a magnetic field B0(x)
of bounded support exists in a perfectly conducting fluid at rest. For t > 0, the fluid
moves under the action of the Lorentz force associated with the field distribution,
and carries the field with it. If the fluid is viscous, then energy is dissipated for
as long as the fluid moves, and so the field seeks a magnetostatic configuration of
minimal magnetic energy compatible with its prescribed (and invariant) topology. The
problem is to determine the asymptotic field, given simply the initial field distribution.
An important invariant of the field is its magnetic helicity

HM =

∫
A · B dV, (1.1)

a quantity that provides a measure of the topological complexity (as characterized by
linkage of field lines) of the field (Moffatt 1969). When HM is non-zero, this invariant
provides a topological barrier to the decrease of magnetic energy, which is bounded
below by a constant proportional to |HM | (Arnold 1974; Moffatt 1985).
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Various variants of this problem can be posed; first, we may consider what happens
if the fluid is inviscid as well as perfectly conducting. In this situation, we have two
further invariants during the magnetohydrodynamic evolution,

the total energy:

ET = EH + EM =
1

2

∫
(u2 + B2) dV, (1.2)

and the cross-helicity:

HC =

∫
u · B dV. (1.3)

If the fluid is initially at rest or in purely irrotational motion, then the cross-helicity
is zero, and remains zero for all time. The magnetic energy will still decrease, at least
initially, but now with a compensating increase of kinetic energy. If HM is non-zero
then the same lower bound as before persists for the magnetic energy, but there is
now no guarantee that the field will settle down to a steady state; it may well oscillate
for all time around some equilibrium configuration.

The situation is very different if there is no linkage in the initial field configuration
(so that HM = 0). There is then no topological barrier to sustained decrease of magnetic
energy, and it is conceivable that this may fall to zero, all the magnetic energy being
simply converted to kinetic energy. In this paper, we examine the simplest situation
of this type, for which the initial field has the form B0 = (0, B(r, z), 0) in cylindrical
polar coordinates (r, θ, z), so that the B-lines are circular and unlinked. The Lorentz
force associated with Maxwell tension in the field lines tends to make these contract
towards the axis of symmetry; however, we shall find that an initial magnetic ‘blob’
does not contract indefinitely towards the axis, but only to a distance determined by
the initial conditions; it then separates into two ‘magnetic eddies’ with nearly spherical
‘fronts’, which propagate in the two opposite directions along the axis of symmetry.

A variant of this problem is to suppose that the magnetic blob is subjected to a
compressive uniform strain of the form U =(Sr, 0, −2Sz) with S > 0. This obviously
tends to flatten any magnetic blob of compact support to a disk-shape near the plane
z = 0, and the question naturally arises as to whether there are any equilibrium states
in which the contracting tendency of the Lorentz force is balanced by this flattening
tendency of the strain field. This problem was originally discussed for a viscous fluid
by Moffatt (1963); the motivation came from the MHD of the turbulent interstellar
medium where kinematic viscosity ν is much greater than magnetic diffusivity η; on
the sub-Kolmogorov scale, the velocity gradient is approximately uniform, but the
magnetic field is still nearly ‘frozen-in’; the relevance of the above problem is then
clear. Recent work of Schekochihin et al. (2001) has focused renewed attention on
this type of situation. In § 6, we shall reconsider the problem posed by Moffatt (1963),
but again limiting attention to the case of an inviscid fluid.

The contour-dynamics formulation developed in this paper has potentially
important application to the more general problem, important in astrophysics, of
understanding the behaviour of isolated magnetic flux tubes, and the manner in
which these can interact and reconnect. Previous studies have either adopted a thin-
tube approximation (see, for example, Spruit 1981; Ferriz-Mas & Schüssler 1993)
which takes no account of deformation of the tube cross-section, or have used direct
numerical simulation at much lower values of the magnetic Reynolds number than
are relevant for astrophysical applications. We shall show in this paper that contour
dynamics offers a promising alternative approach to problems of this kind.
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Figure 1. Magnetic eddy and cross-sections: (a, c) toroidal topology;
(b, d) spherical topology.

2. Contour-dynamics formulation
2.1. Statement of the problem

We consider an axisymmetric MHD flow whose velocity and magnetic fields are
respectively poloidal and toroidal: u = (ur (r, z, t), 0, uz(r, z, t)), B = (0, Bθ (r, z, t), 0),
where (r, θ, z) is a cylindrical coordinate system (figure 1). The fluid is treated as ideal
and magnetic diffusivity and kinematic viscosity are set to zero. We assume that the
magnetic field is confined to a compact patch D in the (r, z)-plane and is proportional
to r inside the patch: Bθ = κr; this is the only toroidal field distribution that remains
invariant under the convective and stretching action of an axisymmetric poloidal flow.
The corresponding current is uniform inside the patch, the current lines closing in a
surface current on the patch boundary. The blob obtained by rotating D about the
z-axis is either topologically toroidal (figure 1a) or topologically spherical (figure 1b).
We shall also consider the more general situation in which the patch is divided into
regions in which κ takes different values: Bθ = κir (figure 1c,d).

2.2. Contour-dynamics formulation

The governing magnetohydrodynamic equations for an incompressible ideal fluid are

ρ
Du
Dt

= −∇p + J × B, (2.1)

∂ B
∂t

= ∇ × (u × B), (2.2)

∇ · u = ∇ · B = 0, µJ = ∇ × B, (2.3)

where ρ and µ are the (constant) density and permeability, and
D/Dt = ∂t + ur∂r + uz∂z. We let p̃ = p/ρ and B̃ = B/

√
µρ and drop the tilde in the

following. Since for a purely toroidal field, the Lorentz force J × B reduces to
∇(B2

θ /2) − B2
θ /r , the equations of motion reduce to

Dur

Dt
= −∂p∗

∂r
− κ2rH [f (r, z, t)], (2.4)
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Duz

Dt
= −∂p∗

∂z
, (2.5)

Df

Dt
= 0, (2.6)

∂ur

∂r
+

ur

r
+

∂uz

∂z
= 0. (2.7)

Here, p∗ = p + (B2
θ /2), and f (r, z, t) = 0 describes the patch boundary with f > 0 on

the inside; H ( · ) is the Heaviside function. Note that the induction equation

D

Dt

(
Bθ

r

)
= 0 (2.8)

is satisfied by the choice Bθ = κrH [f (r, z, t)] and (2.6).
Using the Stokes streamfunction Ψ (r, z), the velocity components are

ur = −1

r

∂Ψ

∂z
, uz =

1

r

∂Ψ

∂r
, (2.9)

and the vorticity (in the θ-direction) is

ω = −1

r
D2Ψ, (2.10)

where

D2 =
∂2

∂r2
− 1

r

∂

∂r
+

∂2

∂z2
. (2.11)

Equation (2.10) may be inverted to give

Ψ (r, z) =

∫∫
ω(r ′, z′)G(r, z|r ′, z′) dr ′dz′, (2.12)

G(r, z|r ′, z′) =
1

2π
(rr ′)1/2

[(
2

k
− k

)
K(k) − 2

k
E(k)

]
, (2.13)

k2 =
4rr ′

(r + r ′)2 + (z − z′)2
, (2.14)

where K(k) and E(k) are the complete elliptic integrals of the first and second kinds.
The vorticity equation reads

D

Dt

(ω

r

)
= −κ2 ∂f

∂z
δ[f (r, z, t)]. (2.15)

Note that the Lorentz force is irrotational except at the patch boundary, and (2.15)
tells us that ω/r is conserved on a particle path except on this boundary where surface
vorticity is generated. We assume that the vorticity is initially zero everywhere except
possibly on the patch boundary; the vorticity then remains zero everywhere except
on the patch boundary, where a non-uniform vortex sheet develops in time. Thus we
may write

ω/r = Ω(r, z, t)δ [f (r, z, t)] |∇f |, (2.16)

where Ω is the local strength of the sheet. Substituting in (2.15) and using (2.6), we
obtain

DΩ

Dt
= −κ2 1

|∇f |
∂f

∂z
− Ω

1

|∇f |
D|∇f |

Dt
. (2.17)
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Now, let s be a parameter taken clockwise along the patch boundary in the (r, z)-
plane, and let (r, z) = (R(s, t), Z(s, t)) be the corresponding parametric representation
of this boundary. Then

∂R

∂t
= ur (R, Z, t),

∂Z

∂t
= uz(R, Z, t), (2.18)

and it follows from (2.6) that

1

|∇f |
D|∇f |

Dt
= −n · [(n · ∇) u] =

1

L

∂L

∂t
+

ur

r
, n =

∇f

|∇f | , (2.19)

where

L2(s, t) ≡
(

∂R

∂s

)2

+

(
∂Z

∂s

)2

.

The streamfunction is now

Ψ (r, z) =

∫∫
r ′G(r, z|r ′, z′)Ω(r ′, z′, t)δ

[
f (r ′, z′, t)

]
|∇f | dr ′ dz′

=

∮
Ω(s, t)R(s, t)G(r, z|R(s, t), Z(s, t))L(s, t) ds, (2.20)

where
∮

denotes an integral along the patch boundary and Ω is now a function of s

and t . We take the principal value at (r, z) = (R(s, t), Z(s, t)) where the integrand is
singular. Equation (2.17) may now be written

∂Ω

∂t
= κ2 cos Θ(s, t) − Ω

(
1

L

∂L

∂t
+

1

R

∂R

∂t

)
, (2.21)

where Θ(s, t) is the angle between the r-axis and the boundary, i.e.

cos Θ =
1

L

∂R

∂s
. (2.22)

If we introduce γ = ΩLR, equation (2.21) is simplified since

∂γ

∂t
=

∂Ω

∂t
LR + Ω

∂L

∂t
R + ΩL

∂R

∂t
.

In fact γ corresponds to the Lagrangian parameter for a vortex sheet without magnetic
fields; dγ is the circulation in the small area which includes a portion ds of the patch
boundary. To summarize, the equations of motion are

∂γ

∂t
= κ2R

∂R

∂s
, (2.23)

∂R

∂t
= ur (R(s, t), Z(s, t), t),

∂Z

∂t
= uz(R(s, t), Z(s, t), t), (2.24)

ur (r, z) = −1

r

∮
γ (s, t)

[
∂

∂z
G(r, z|R(s, t), Z(s, t))

]
ds, (2.25)

uz(r, z) =
1

r

∮
γ (s, t)

[
∂

∂r
G(r, z|R(s, t), Z(s, t))

]
ds. (2.26)

These five equations form a closed set of equations on the boundary.
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The above formulation for a patch, or single contour, can be readily extended to
multiple contours. For, consider a magnetic field of the form

Bθ

r
=

m∑
i=1

κiH [fi(r, z, t)], (2.27)

κi = κi − κi−1 > 0, κ0 = 0, (2.28)

where fi = 0 corresponds to the ith contour, which separates the regions in which
Bθ/r = κi−1 and κi . We assume that the contours do not intersect, so that

fi(r, z, t) > fj (r, z, t) for i < j. (2.29)

Then the equations of motion are

∂γi

∂t
= AiRi

∂Ri

∂si

, (2.30)

∂Ri

∂t
= ur (Ri(si, t), Zi(si, t), t),

∂Zi

∂t
= uz(Ri(si, t), Zi(si, t), t), (2.31)

ur (r, z) = −1

r

m∑
i=1

∮
i

γi(si, t)

[
∂

∂z
G(r, z|Ri(si, t), Zi(si, t))

]
dsi, (2.32)

uz(r, z) =
1

r

m∑
i=1

∮
i

γi(si, t)

[
∂

∂r
G(r, z|Ri(si, t), Zi(si, t))

]
dsi, (2.33)

where

Ai = (κi)
2 + 2

i−1∑
j=1

κiκj = κ2
i − κ2

i−1. (2.34)

2.3. Conservation laws

The total energy ET and the volume fractions Vi of the eddy are conserved. The total
energy is

ET = EH + EM, (2.35)

where the hydrodynamic energy EH and the magnetic energy EM are now given by

EH =
1

2

∫
u2 = π

∑
i

∮
i

γi(si, t)Ψ (Ri(si, t), Zi(si, t), t) dsi, (2.36)

EM =
1

2

∫
B2 =

π

4

∑
i

Ai

∮
i

r4nr dli , (2.37)

Here dli = Lidsi and n = (nr, nz) denotes the outward unit normal to the contours.
The volume inside the ith contour is

Vi =

∫
Ti

dV = π

∮
i

r2nr dli . (2.38)

2.4. Relation with other problems

The equations derived above are related to those that have been previously obtained
for the nonlinear evolution of Kelvin–Helmholtz (vortex sheet) and Rayleigh–Taylor
instability. In fact, if we replace the right hand-side of (2.23) by zero, so that the
strength of the sheet is constant (at constant s), the present equations become
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equivalent to those derived by Caflisch, Li & Shelley (1993) for the evolution of an
axisymmetric vortex sheet. On the other hand, the boundary-integral formulation of
the Rayleigh–Taylor instability deals with a vortex sheet whose strength varies in time
(Baker, Meiron & Orszag 1980, 1982). There are two differences from the present
case. First, in the Rayleigh–Taylor instability, the driving force is constant in regions
separated by the vortex sheet, whereas in the present case the driving force, κ2

i r in
the ith region, depends on position. Second, the rate of change of sheet strength
has several terms essentially due to discontinuity in density in the Rayleigh–Taylor
instability; equation (2.23) is rather simple in the present case since the density is
constant everywhere.

3. A family of exact solutions
We show in this section that there exists a family of exact solutions to (2.23)–(2.26)

representing magnetic vortices of spherical structure that translate without change
of shape. These are related to Hill’s spherical vortex for the classical hydrodynamic
situation, and indeed include Hill’s vortex as a limiting case.

The magnetic vortex is steady in a moving frame (r, z∗) = (r, z − U0t), and is given
by

Ψ (r, z∗) =

{
3
4
U ′

0r
2[1 − (σ/R0)

2], σ < R0,

− 1
2
U0r

2[1 − (R0/σ )3], σ > R0,
(3.1)

where σ 2 = r2 + z∗
2, and

f (r, z∗) =

{
Ψ/U ′

0, σ < R0,

Ψ/U0, σ > R0,
Ω(r, z∗) =

3

2R0

(U0 − U ′
0). (3.2)

The total pressure is obtained from equations (2.4) and (2.5) in the form

p∗ =

⎧⎨
⎩p0 − 1

2
κ2r2 − 1

2
u2 − 15U ′

0

2R2
0

Ψ, σ < R0,

p∞ + 1
2
U 2

0 − 1
2
u2, σ > R0.

(3.3)

Since u =3U0r/2R0 at σ = R0+ and u =3U ′
0r/2R0 at σ = R0−, continuity of this total

pressure across the boundary σ = R0 requires that

U 2
0 − U ′

0
2
=

(
2
3
κR0

)2
. (3.4)

The velocity field given by (3.1) is that of the classical Hill’s vortex but with
different velocities U0 outside the sphere σ = R0 and U ′

0 inside, this difference being
accommodated by a vortex sheet of appropriate strength on σ = R0. In particular,
the case U0 = U ′

0, which implies κ = 0, corresponds to Hill’s spherical vortex. For
U0 = −U ′

0, which also implies κ = 0, the velocity field inside the sphere is that of Hill’s
vortex with the opposite sign; in this case, the vortex sheet on the boundary, whose
strength is Ω = −3U0/R0, keeps the solution steady without a magnetic field. For
|U0| �= |U ′

0|, the magnetic field together with the vortex sheet on the surface of the
sphere makes the inside translate with the velocity U0.

The contour-dynamics equations obtained above show that the increase of γ

through (2.23) is balanced by convection and stretching along the boundary. Thus, if
we take s = ϕ at t = t0 with ϕ taken clockwise from the z-axis, γ increases by

κ2R2
0 cos ϕ sin ϕt, (3.5)
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in the time interval [t0, t0 + t]. Since the segment ϕ0 < ϕ < ϕ0 + ϕ is convected to

ϕ0 +
uϕ

R0

∣∣∣∣
ϕ0

t < ϕ < ϕ0 + ϕ +

(
uϕ

R0

∣∣∣∣
ϕ0

+
1

R0

∂uϕ

∂ϕ

∣∣∣∣
ϕ0

ϕ

)
t, (3.6)

where uϕ is the velocity along the boundary, γ should be divided by

1 +
1

R0

∂uϕ

∂ϕ

∣∣∣∣
ϕ0

t, (3.7)

if we relabel the particles as s = ϕ at t = t0 + t . The result should coincide with γ at

s = ϕ0 +
uϕ

R0

∣∣∣∣
ϕ0

t. (3.8)

This requirement gives

κ2R2
0 sin ϕ cos ϕ − γ

1

R0

∂uϕ

∂ϕ

∣∣∣∣
ϕ0

=
1

R0

∂γ

∂ϕ

∣∣∣∣
ϕ0

uϕ. (3.9)

It is easy to check that this relation is satisfied by virtue of (3.4) and the relations

uϕ = 1
2
(uϕ |σ=R0+

+ uϕ |σ=R0−), γ = R2
0(uϕ |σ=R0+

− uϕ |σ=R0−). (3.10)

The solutions above have finite energy in the frame in which the fluid is at rest at
infinity:

EH = πR3
0

(
U 2

0 +
3

7
U ′

0
2

)
= πR3

0U
2
0

(
10

7
− 4κ2R2

0

21U 2
0

)
, (3.11)

EM =
3

5
πR3

0

(
U 2

0 − U ′
0
2
)

=
4

15
πκ2R5

0, (3.12)

ET = πR3
0

(
8

5
U 2

0 − 6

35
U ′

0
2

)
= πR3

0U
2
0

(
10

7
+

8κ2R2
0

105U 2
0

)
. (3.13)

In particular, for U ′
0 = 0,

EH = πR3
0U

2
0 , EM = 3

5
πR3

0U
2
0 , ET = 8

5
πR3

0U
2
0 , (3.14)

giving the energy ratio EM/EH = 3/5.

4. Numerical procedure
We now describe some numerical simulations of equations (2.23)–(2.26) or (2.30)–

(2.33). Each contour is represented by a finite number of points: si,j = j/Ni, j =
1, . . . , Ni . The line integrals in (2.25) and (2.26) or (2.32) and (2.33) are evaluated
by the trapezoidal formula. The integrands diverge at (r, z) = (r ′, z′); but following
Pozrikidis (1986), we subtract the asymptotic forms of the integrands for which the
principal values can be evaluated analytically on the arc connecting (r, z) = (r ′, z′) and
its neighbouring points from the singular integrands. The remainders, which do not
diverge, are integrated numerically. Equations (2.23) and (2.24), or (2.30) and (2.31),
are advanced by the fourth-order Runge–Kutta method.

Except in § 4.3, where the exact solution is numerically checked, the strength of the
vortex sheet is assumed to be zero at t = 0; in other words, the fluid is initially at rest
for the cases without imposed strain.
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Figure 2. Appearance of singularity. (a) Log-linear plot of the Fourier amplitudes.
(b) Strength of vortex sheet as a function of normalized length.

(a) (b)

r r

z

–1.0

–0.5

0

0.5

1.0

–1.0

–0.5

0

0.5

1.0

–1.5 –1.0 –0.5 0 0.5 1.0 1.5 –1.5 –1.0 –0.5 0 0.5 1.0 1.5

Figure 3. Evolution of the magnetic torus. (a) t = 0, (b) t = 1.15 (around the appearance
of singularity).

There are two techniques that need a word of explanation: regularization and
redistribution of points. We describe these techniques using, by way of example, the
case of a torus with circular core rc/R0 = 0.5. The variables are non-dimensionalized
by the time scale κ−1, and the length scale R0 (the initial larger radius of the torus).

4.1. Singularities and regularization

It is well-known that singularities can develop on a vortex sheet in a finite time (Moore
1979; Krasny 1986; Caflisch et al. 1993; Sakajo 2002). Here, we encounter the same
type of singularity on a contour. Figure 2 shows the evolution of the spectrum and
sheet-strength distribution. We have applied a Fourier filter (Krasny 1986) to suppress
numerical irregularities. At t ≈ 1.15, the spectrum decays algebraically as n−1.5, and
the sheet strength has cusps at the symmetrically placed points l̃ ≈ 0.09 and 0.91. As
Krasny (1986) has shown, these features are clear signs of singularities. The magnetic
torus contracts towards the z-axis as a result of the inward Lorentz force κ2r (figure 3).
The singularities, however, emerge so quickly that we cannot follow the evolution of
the contour for very long.

We regularize these singularities by introducing a finite-core-size effect as adopted
by Krasny (1987) and Caflisch et al. (1993). This is achieved by modifying the
Biot-Savart law as follows:

A =
1

4π

∫
ω

r
dx ′ → 1

4π

∫
ω

(r2 + ε2)1/2
dx ′. (4.1)



262 Y. Hattori and H. K. Moffatt

(a)

r

z

–1.0

–0.5

 0

0.5

1.0

–1.5 –1.0 –0.5  0 0.5 1.0 1.5

(b)

r

–2.0

–1.5

–1.0

–0.5

0

0.5

1.0

1.5

 2.0

–1.5 –1.0 –0.5 0 0.5 1.0 1.5

Figure 4. Regularized simulation. Cross-sections: (left) ε = 0.05, (right) ε =0.1. (a) t = 1.15,
(b) t = 3.5.

The regularized Green function is formally the same as the original, except for a
modification in k:

G(r, z|r ′, z′) =
1

2π
(rr ′)1/2

[(
2

k
− k

)
K(k) − 2

k
E(k)

]
, (4.2)

where now

k2 =
4rr ′

(r + r ′)2 + (z − z′)2 + ε2
. (4.3)

Note that this regularization does not affect the conservation laws; both the
total energy and the volume are invariants of the motion with the regularized
Green function. Figure 4 shows results with this regularized Green function, with
regularization parameter ε set to 0.05 and 0.1. The cross-section at t = 1.15 (figure 4a)
is quite similar to that for ε =0 (figure 3b). We can continue the simulation for
a much longer time with ε = 0.05 and 0.1. At t = 3.5, the torus has contracted
further towards the z-axis and is stretched in the z-direction. The contour rolls up at
(r, z) ≈ (0.8, ±1.25). Both the total energy and the volume are conserved within errors
less than 0.04 % for 0 � t � 2.5.

The regularized Green function is used in all the numerical results that follow. The
fine-scale structures do depend on the value of ε, but the global motion is fairly
insensitive to ε, provided it is small (see figure 4). For the roll-up region we may
expect scaling laws as in Nitsche, Taylor & Krasny (2003). (It is also known that for
the case of a vortex sheet (Tryggvason, Dahm & Sbeih 1991; Nitsche et al. 2003) the
global motion with the regularized Green function converges as the regularization
parameter decreases to the same limit as the small-viscosity limit in a Navier–Stokes
simulation.)

4.2. Redistribution of points

As time proceeds in the numerical simulation, the points which represent the contour
can become too sparse or too dense, depending on their positions, to keep sufficient
precision; for example, the error in volume conservation grows to 0.8% at t = 3.5.
To overcome this problem, we redistribute points every 20–40 steps. There are two
criteria for redistribution: the maximum distance lmax between the points and the
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Figure 5. Effect of redistribution. Magnified view of spirals. t = 3.5. (a) Without
redistribution, (b) with redistribution.

maximum angle φmax between adjacent arcs. In other words, a new point is created
whenever necessary to ensure that the distance and the angle do not exceed lmax

and φmax, respectively. In practice, we connect the old points by cubic spline and
distribute new points consecutively with the distance

l = lmax tanh

(
R∗φmax

lmax

)
,

where R∗ is the radius of curvature of the arc. Note that l is a smooth function of
R∗ satisfying

l → lmax as R∗ → ∞,

l → R∗φmax as R∗ → 0.

In the following calculations, φmax and lmax are set to 0.08π and 0.5ε. The results
are almost unchanged by using lower values of φmax and lmax. The new points are
parametrized with a constant increment. The sheet strength should be unchanged by
change of parameterization s → s ′, implying γ (s)/L(s) = γ ′(s ′)/L′(s ′).

The redistribution keeps the magnetic energy and the volume almost unchanged,
but it produces a certain amount of error in the hydrodynamic energy; this is probably
due to small but non-negligible errors in interpolation and numerical differentiation.
This error is eliminated by scaling γ , i.e. by multiplying γ by a factor close to unity
so that the new hydrodynamic energy is equal to the old value. This rescaling does
not change the magnetic energy or the volume since these are independent of γ .

Figure 5 compares cases without and with redistribution. The number of points
increases monotonically in most cases from N =100–200 initially to N = 1000–2000
at the end of the calculation.

4.3. Numerical test of exact solution

It is of interest to check numerically the exact solution found in § 3. Figure 6
compares the cross-sections of the numerical solution (solid line) and the exact
solution (dashed line). We set U ′

0 = 0; the flow inside the sphere is uniform. The
regularization parameter ε is set to 0.05. The agreement is reasonable except around
the rear where an instability appears. This instability is similar to that of Hill’s vortex,
as described by Moffatt & Moore (1978) and numerically confirmed by Pozrikidis
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Figure 6. Numerical test of exact solution. Cross-section. Solid lines: simulation, dashed lines:
exact solution. (a) t = 0, (b) t = 2, (c) t = 4. The ‘spike’ instability near the rear stagnation point
is evident.
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Figure 7. Numerical test of exact solution. Streamlines at t = 2: solid lines
(right), simulation; dashed lines (left), exact solution.

(1986); it arises from the sweeping of any perturbation of the spherical boundary
round towards the rear stagnation point where the perturbation accumulates. The
speed of the sphere is estimated as 0.64 using the position of the front, which is close
to the exact value 2/3 in the present non-dimensionalization.

Figure 7 compares the streamlines of the numerical solution (right, solid lines)
and the exact solution (left, dashed lines) at t = 2. The agreement is good. Inside the
sphere centred at (r, z) ≈ (0, 1.2) the flow is almost uniform; outside the sphere the
exact streamlines are those of Hill’s vortex.

5. Motion without strain
5.1. Simulation parameters

We consider eddies of either toroidal or spherical topology (figure 1). The initial
shapes of contours are listed for the cases without strain in tables 1 and 2.

In table 1, ac and bc are the lengths of the r- and z-axes of the core for the torus
cases and in table 2, a, b are the same measures of the section for the sphere cases.
For the torus case, the circular core with rc = 0.5 is studied as a basic prototype. The



Evolution of toroidal magnetic eddies in an ideal fluid 265

Case Topology Core/Cross-section Parameters

TC Torus Circular rc = 0.1, 0.3, 0.5, 0.8
TE Torus Elliptic (ac, bc) = (0.9, 0.2778), (0.25, 1)
SC Sphere Circular (a, b) = (1, 1)
SE Sphere Elliptic (a, b) = (0.5, 2), (2, 0.5)

Table 1. The initial shapes of contours for single-contour cases (m= 1). Underlined values
denote the basic prototype.

Case Topology Core/Cross-section Parameters

TC Torus Circular rc = 0.5
SC Sphere Circular (a, b) = (1, 1)

Table 2. The initial shapes of contours for multiple-contour cases (m = 1, 2, 4, 8).

two cases with elliptic core are chosen so that this core has the same area as for the
basic case and does not touch the z-axis. For the spherical topology cases, the case
of a true sphere (a, b) = (1, 1) is studied as a basic prototype.

The regularization parameter ε is set to 0.1rc for the torus cases with circular cores
and 0.05 otherwise. Since all the cases considered in the following have symmetry
with respect to the plane z = 0, only the region r, z � 0 is shown in the figures of
cross-section.

5.2. Single contour: m = 1

5.2.1. Evolution of the contour

Figure 8 shows the time evolution of the cross-section of the eddy, or the contour,
for the torus case with a circular core rc = 0.5. Starting from figure 8(a), the torus
contracts towards the z-axis and is stretched in the z-direction (figure 8b, c). Roll-up
starts around t =2 (figure 8c) and then spirals are formed (figure 8d). The number
of turns of the spirals increases in time. On the other hand, the region above/below
the upper/lower spiral forms a spherical front with a hole around the z-axis, which
moves steadily along the z-axis. The region between the two spirals becomes thin as
the fronts move outward, while the speed of contraction becomes small in the later
stage. At t = 5.5 (figure 8g), an instability is observed around the outer end of the
spiral and structures which are much smaller than the regularization parameter ε

start to develop. Since these fine-scale structures induce irregular motions which are
not observed for Navier–Stokes solutions (Nitsche et al. 2003), we stop the calculation
when they become so large that the global motion is affected in an unphysical way.

Figure 9 shows the time evolution of the contour for the sphere case (a, b) = (1, 1).
First the contour contracts towards the z-axis. The top and bottom parts form
spherical fronts whose radii are nearly unchanged after t =2; they move steadily
outwards. The body part between the spherical fronts is parallel to the z-axis for
|z| � 1.2–1.5 for t � 4. The motion within this body is very slow, tending to a ‘magnetic
cylinder’ for which

ur = uz = 0, Bθ =

{
κr, r < R0,

0, r > R0.
(5.1)
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Figure 9. Evolution of magnetic sphere. Case SC. Cross-section. (a) t = 0, (b) 2, (c) 4, (d) 5,
(e) 6, (f ) 7.

Roll-up as for the torus case starts at t ≈ 4, and the number of turns increases with
time; compared to the torus case however, the rate of increase is small since the initial
curvature of the contour is small.

The contour evolution is compared in figure 10 for the other torus cases. For the
circular cores with rc = 0.1 and 0.3 (figure 10a, b) and the elliptic core elongated in
the z-direction (figure 10d), the spiral forms so rapidly that the torus is not fully
contracted and the formation of spherical fronts is not clear by the end of the
simulation. On the other hand, for the circular core with rc = 0.8 (figure 10c) and
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Figure 10. Evolution of magnetic torus. Cross-section. The initial shape (dashed line) and a
shape near the end of calculation t = t1 (solid line). (a) Case TC, rc =0.1, t1 = 3, (b) Case
TC, rc = 0.3, t1 = 4, (c) Case TC, rc = 0.8, t1 = 7, (d) case TE, ac = 0.25, t1 = 4, (e) case TE,
ac = 0.9, t1 = 5.

the elliptic core elongated in the r-direction (figure 10e), the eddy contracts until the
inside of the hole nearly touches the z-axis and the fronts clearly develop to spherical
form.

The evolution of the contours for the other cases of spherical topology are compared
in figure 11. Here spherical fronts are seen in both cases. The size of the front is likely
to depend on the initial radius of curvature at r = 0; the larger radius of curvature
leads to the larger front. For the ‘cigar’ case (a, b) = (0.5, 2), a second roll-up is
observed around (r, z) ≈ (0.25, 2.9).

5.2.2. Sheet strength distribution

Figure 12 shows the evolution of the strength of the vortex sheet Ω for the case
of a torus with a circular core of radius rc = 0.5. In this figure l̃ denotes distance
along the sheet normalized by its total length; l̃ =0 and 0.5 correspond to the outer
and inner point of the intersection with z =0, respectively, while l̃ = 1 coincides with
l̃ = 0. The interval 0.5 � l̃ � 1 covers the upper half of the section (z � 0), the direction
of increase of l̃ being clockwise. Note that the same value of l̃ does not generally
correspond to the same fluid particle for different instants. At first, the sheet strength
becomes large around the top and the bottom where |∂R(s, t)/∂s| is large. This leads
to a sine-like shape of the sheet strength distribution (figure 12a); it is then deformed
by the velocity induced by the sheet itself. A sharp peak corresponding to the centre
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Figure 12. Strength of vortex sheet as a function of normalized length for a torus; case TC,
rc = 0.5. (a) t = 1, (b) 2, (c) 3, (d) 4.

of the spiral is observed for t � 2. As time proceeds, regions of opposite sign of Ω

appear: the oscillations seen for t = 3 and 4 correspond to the turns of the spiral.
Figure 13 shows the evolution of Ω for the sphere case (a, b) = (1, 1). Here the

normalized length l̃ runs from the top of the contour (l̃ = 0). The interval 0 � l̃ � 0.5
corresponds to the upper half of the contour. An interval of nearly constant Ω is seen
at each instant, this constant being close to unity for t � 2. This point is discussed
with reference to the exact solution (3.2) in § 5.2.4. As in the toroidal case, a sharp
peak corresponding to the centre of the spiral is seen for t = 4, 6 and the oscillations
seen for t = 6 correspond roughly to turns of the spiral. Apart from these oscillations,
the sheet strength is almost unchanged for t � 2.
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5.2.3. Energy and circulation

The evolution of energy E and circulation Γ are shown in figure 14 for the case of
the torus with a circular core rc = 0.5; Γ is the total sheet strength in the upper half,
i.e.

Γ =

∫
z�0

ΩR dl =

∫
z�0

γ ds.

Initially the hydrodynamic energy grows parabolically. The rate of growth, however,
becomes small as the eddy approaches the z-axis and the spirals start to form at
t ∼ 2. In consequence, the magnetic energy EM does not continue to decrease to zero,
although there is no topological impediment to such a decrease. The circulation grows
linearly for small t . The rate of growth becomes small around t = 2. It is worth noting
that equation (2.23) implies

dΓ

dt
=

κ2

2

[
R2(0) − R2

(
1

2

)]
,
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Figure 15. Time evolution of magnetic energy fraction. (a) Torus case, dependence on core
size: cases TC, rc = 0.1, 0.3, 0.5, 0.8; (b) torus case, dependence on aspect ratio: case TC,
rc = 0.5, cases TE, ac = 0.25, 0.9; (c) spherical case.

for torus cases. Thus |dΓ/dt | becomes small when the torus contracts to the z-axis
and becomes thin.

Figure 15 compares the time evolution of the magnetic energy fraction EM/ET both
for the torus and sphere cases. The lines corresponding to circular core cases collapse
for small t (figure 15a). This is because the torus moves initially with a constant
acceleration which depends on the shape but not on the size of the core. For rc = 0.8,
the magnetic energy fraction appears likely to converge to a non-zero value, while
this behaviour is not clear for rc = 0.1 and 0.3. For the elliptical cores (figure 15b), the
lines do not collapse initially since the acceleration depends on cross-sectional shape.
For (ac, bc) = (0.9, 0.2778), the decay of the magnetic energy fraction is very slow; the
value of EM/ET is 0.252 at t =3 and 0.236 at t = 6. The time evolution for the sphere
cases (figure 15c) is similar to figure 15(b) for elliptic cores with the same direction
of elongation.

5.2.4. Spherical front

The spherical fronts move almost steadily as seen in figures 8 and 9. A natural
question arises: are they related to the exact solution found in § 3? The answer is
yes. Figures 16 and 17 show the radius of curvature and the strength of the vortex
sheet near the end of the simulation; l̃ is shifted to adjust the position of the front
for torus cases (figure 16). In each case, there is an interval of l̃ in which both R∗ and
Ω are nearly constant. Moreover, the value of Ω is close to unity in accordance with
the present non-dimensionalization. The speed of the front is obtained by simulation
and is compared with the analytical value (3.4), which is 2R∗/3 in the present case
(table 3). The simulation values are calculated using the maximum value of z; for the
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Case Simulation Analytical

TC, rc = 0.5 0.613 0.468
TC, rc = 0.8 0.757 0.737
TE, ac = 0.9 0.638 0.654
SC 0.450 0.468
SE, a = 0.5 0.256 0.266
SE, a = 2 0.713 0.722

Table 3. Speed of spherical front.

analytical values, the averaged value of R∗ in an interval of nearly constant R∗ and
Ω is used. We see reasonable agreement except for the torus case with a circular core
rc = 0.5, for which the spherical fronts are not so clearly formed.

Conservation of energy and volume provides further useful information concerning
the relationship between the initial state and the asymptotic state of development.
Thus, if the initial magnetic blob is a spheroid of volume V and principal
semi-axes a and b, the initial magnetic energy is easily calculated: it is EM0 =
1
5
κ2V 5/3(3/4π)2/3(a/b)2/3. We have seen that the exact solution for a propagating

spherical magnetic vortex of volume V0 has total energy ET = 8
15

V0
5/3κ2(3/4π)2/3.

If V0 = V/2 and ET =EM0/2, then all the initial energy can be channelled into
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the two propagating spherical vortices; this requires that a/b = 8
√

2/3
√

3 ≈ 2.18. If
a/b > 2.18, then the surplus initial energy is presumably accumulated in the spirals
that are observed in the numerical simulations. If a/b < 2.18, then the volume V0 of
propagating vortices that can be generated is correspondingly reduced.

These results explain the asymptotic behaviour of the magnetic energy described in
§ 5.2.3: the formation of spherical fronts prevents the magnetic energy from decreasing
to zero since the fronts retain a finite fraction of the magnetic energy.

5.3. Multiple contours: m � 1

As a step towards dealing with more complex distributions of magnetic field, we
now describe some simulations with multiple contours. In principle, any continuous
magnetic field Bθ of compact support in the (r, z)-plane can be approximated by a
piecewise-constant function (2.27); more precisely, it is possible to take a distribution
(2.27) which converges to a given Bθ as m → ∞ in L2-norm. The use of multiple
contours thus provides a route towards treatment of this more general situation.

5.3.1. Initial magnetic field

We consider the following continuous distributions of Bθ which have compact
supports

Bθ

r
=

⎧⎪⎨
⎪⎩

1 − (r − 1)2 + z2

r2
c

, (r − 1)2 + z2 � r2
c ,

0, (r − 1)2 + z2 > r2
c ,

(5.2)

for the torus case and

Bθ

r
=

{
1 − r2 − z2, r2 + z2 � 1,

0, r2 + z2 > 1,
(5.3)

for the spherical case. There are various ways to approximate the above distributions
by (2.27). For a given m, we choose {(κi, fi)} (i = 1, 2, . . . , m) so that (i) κi is the
maximum of Bθ/r in the region {(r, z)|fj � 0, j = 1, . . . , i, fj < 0, j = i + 1, . . . , m}
and (ii) Ai = Aj, i, j = 1, . . . , m; this gives κi = (i/m)1/2 and a natural choice of fi

is fi(r, z) = 1 − κi−1 − r2 − z2 for the spherical case (figure 18); a similar distribution
for the core is used for the torus case. Note that the total energy (i.e. the initial
magnetic energy) depends on m, and this should be taken into account in considering
the dependence of the results on m.

5.3.2. Evolution of contours

Figure 19 shows the evolution of contours for the torus case with m =4. The global
motion is not very different from the single-contour case shown in figure 8. The
contours contract towards the z-axis and are stretched in the z-direction. Frontal
structures are also formed. The roll-up, however, is much slower than that in the
single-contour case. This is because the strength of each sheet is small, the jump
of Bθ/r being reduced from A= 1 for m = 1 to Ai = 1/m. The contours tend to
concentrate around the fronts and near the inner boundary of the torus. At t =5,
fine-scale structures are observed; these differ from those in the single-contour case,
presumably because of interaction between the contours.

Figure 20 shows the evolution of contours for the sphere case with m =8. We see
contraction and stretching which are slower than in the single-contour case. Roll-up
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Figure 19. Evolution of magnetic torus. m= 4. Cross-section. (a) t = 0, (b) 1, (c) 2, (d) 3,
(e) 4, (f ) 5.

is not observed during the time of simulation. The contours concentrate around the
fronts making the effective jump of Bθ/r larger. This jump depends on the position
along the surface of the front, in contrast to the single-contour case, although the
shapes of the fronts are similar to that in the single-contour case.

5.3.3. Energy and circulation

Figure 21 shows the time evolution of magnetic energy fraction. For the torus case
(figure 21a), its decay rate is initially smaller for larger m because the magnetic force is
weaker. At later time, the fraction tends to converge to a value in the range 0.25–0.3.
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Figure 21. Time evolution of magnetic energy fraction. Multiple contours. (a) Torus case,
(b) sphere case.
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Figure 22. Time evolution of total circulation. Multiple contours. (a) Torus case,
(b) sphere case.

The decay rate at t ≈ 5 is smaller for larger m. For the sphere case (figure 21b), the
initial evolution is similar to that in the torus case, but the decay rate at t ≈ 7 is
larger for larger m. Of course, this result depends on the particular time chosen, but
an instability appears along the front soon after t =7, so that we cannot continue the
calculation after this time.

Figure 22 shows the evolution of the total circulation in the upper half of the
(r, z)-plane

Γ =
∑

i

∫
z�0

γi dsi .
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Figure 23. Evolution of magnetic sphere under strain. S = 0.3. Cross-section. (a) t = 0, (b) 1,
(c) 2, (d) 4.
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Figure 24. Evolution of magnetic sphere under strain. S = 0.5. Cross-section. (a) t = 0, (b) 1,
(c) 2, (d) 3.

As in the single-contour case, we have

dΓ

dt
=

∑
i

Ai

2

[
R2

i (0) − R2
i

(
1

2

)]
.

Since fi >fj for i < j , the magnitude of dΓ/dt tends to decrease as m increases. The
qualitative features of evolution do not change much with m, however.

6. Evolution under strain
We now consider the effect of incorporating a uniform axisymmetric compressive

strain us = (Sr, 0, −2Sz) on the above analysis. As already indicated in the intro-
duction, this situation was first investigated by Moffatt (1963) for a viscous fluid,
where some evidence for the existence of steady disk-shaped magnetic eddies was
given. Here, we again restrict attention to the inviscid case. The numerical procedure
is the same but with the above strain flow incorporated in (2.24). The strain rate S is
set to 0.1, 0.3, 0.5.

6.1. Evolution of the contour

The evolution of the contour for S = 0.1 is not very different from the case without
strain except that initially the contour is passively advected by the strain field.
Figures 23 and 24 show the time evolution of the contour for S =0.3 and 0.5,
respectively. For both cases the contour is initially flattened to form a disk (figures 23b,
24b), and then roll-up starts around t = 2. For S = 0.3 the spirals are advected away
from the z-axis by the strain, while for S = 0.5 they roll up inside the disk. The
evolution for S = 0.5 suggests an approach to a disk-type equilibrium as envisaged by
Moffatt (1963): the thickness of the disk reaches a local minimum around t = 2 and
increases gradually for t > 2 as shown in figure 25(c).
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Figure 25. Time evolutions of (a) magnetic energy, (b) circulation and (c) zmax. Dependence
on the strain rate S.

6.2. Energy and circulation

Figure 25 shows the evolutions of magnetic energy, circulation and zmax, which is
a half the disk thickness. (The hydrodynamic energy, including that of the strain
field, is infinite and so is not shown.) The case without strain (S =0) is included for
comparison. For S > 0, the magnetic energy increases initially due to passive advection
by the strain field; it then decreases as the Lorentz force causes contraction, and roll-
up starts; finally, it increases again, but more slowly than before (figure 25a). This
behaviour of magnetic energy again suggests the existence of a disk-type equilibrium
as a result of a balance between the effects of strain and of the Lorentz force.
As S increases, |Γ | increases since the strain deforms the eddy so that stronger
magnetic forces act upon it (figure 25b). The circulation evolves similarly for S = 0
and S = 0.1. For S = 0.5, however, the circulation continues to grow throughout the
time of simulation since for sphere cases we have

dΓ

dt
=

κ2

2
R2

(
1

2

)
,

where R(1/2) is the value of r where z =0 on the contour. The rate of increase in the
thickness of the disk after it attains a local minimum is smaller for larger values of
S (figure 25c).

7. Concluding remarks
We have developed a contour-dynamics formulation for axisymmetric MHD with

purely toroidal magnetic field. A class of exact steady solutions of the ideal MHD
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equations, which includes Hill’s spherical vortex as a special limiting case, has been
found. The evolution of toroidal magnetic eddies has been studied numerically using
the contour-dynamics formulation. The magnetic energy initially decreases, but this
decrease is arrested due to the formation of outward-propagating spherical fronts,
which are reasonably well represented by the exact solutions; this result is noteworthy
because there is, for the field configuration studied here, no topological barrier
to decrease of the magnetic energy to zero. We have also carried out numerical
calculation with multiple contours, showing that the method can in principle simulate
a magnetic eddy with a general distribution of a magnetic field of compact support.
Some numerical evidence is presented suggesting the existence of steady magnetic
eddies under the additional effect of imposed compressive strain.

As regards the fate of the magnetic energy, one should note that what happens for
extremely high-Reynolds-number flows can be different from the present results for
ideal flows. Slow viscous dissipation of energy would then cause a correspondingly
slow decay of the ‘exact’ steady structures described in § 3. For three-dimensional
turbulent flows, dissipation is expected to converge to a finite value as the Reynolds
number and magnetic Reynolds number tend to infinity. However, even in this much
more complex situation, the formation of spherical fronts (a magnetic analogue of
‘coherent structures’) may be expected to delay the decay of magnetic energy.

The present method is valuable in computational fluid dynamics since it is based
on ideal dynamics. Numerical methods in fluid dynamics often require dissipation,
sometimes introduced artificially, to ensure stability. Accordingly, most such methods
cannot be used for extremely high-Reynolds-number flows. In such situations,
Lagrangian methods such as the vortex method or contour dynamics, based as
they are on ideal fluid dynamics, provide powerful tools. Although the present paper
has been limited to axisymmetric situations for which the velocity is poloidal and
the magnetic field toroidal, it provides a starting point for constructing a method for
more general MHD flows.

We have shown numerically that the exact solution is subject to the same type
of instability as found by Moffatt & Moore (1978) for Hill’s spherical vortex:
perturbations are swept to the neighbourhood of the rear stagnation point, where a
spike grows. One may also anticipate a Kelvin–Helmholtz type of instability, since the
surface of the sphere is now a vortex sheet, but this instability is also influenced by
the sweeping effect. It is hoped that analytical work in progress will reveal how these
two mechanisms of instability interact. It would also be of interest to see how the
front of the propagating vortex is affected by three-dimensional disturbances which
are absent in axisymmetric simulations.

The deformation of the cross-sections as they evolve, as seen, for example, in figure 8,
is similar to that seen in direct numerical simulations of buoyant magnetic flux tubes
(Fan, Zweibel & Lantz 1998; Dorch & Nordlund 1998). The main driving force is
magnetic tension in our case, whereas it is buoyancy in these simulations. However,
as mentioned in § 2.4, buoyancy-driven motion like that induced by Rayleigh–Taylor
instability is closely related with the problems considered in this paper, so the
similarities are not surprising. Since our formulation assumes vanishing diffusivities,
it is perhaps better adapted (than DNS) for very high-Reynolds-number situations.

Finally, possible extension of the contour-dynamics formulation may be anticipated.
The present method needs improvement to be applied to more practical problems.
One of its limitations is associated with the roll-up of contours, as seen for example in
figure 8. Contour surgery as developed by Dritschel (1989) could be used to surmount
this difficulty. However, it is not easy here to reconnect contours without creating
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jumps in the strength of the vortex sheet since this strength depends on both position
and time.

Extension to cases with non-vanishing magnetic helicity would also be of interest.
However, it would be more difficult to deal with magnetic fields which have both
toroidal and poloidal components. For the axisymmetric situation, it may be possible
to deal with the case where both the velocity and magnetic fields are purely poloidal
by a similar method since the induction equation then reduces to

D(rAθ )

Dt
= 0,

where Aθ is the azimuthal component of the vector potential A of the magnetic field,
while the poloidal components of A vanish. Of course, there are problems that need
to be overcome, notably that associated with the Lorentz force in the momentum
equation: if we simply consider contours of rAθ so that this quantity has jumps across
the contours, then the Lorentz-force term has higher-order singularities which cannot
be easily handled. The magnetic helicity vanishes also for this case. However, if this
case can be simulated, one can also simulate a toroidal magnetic eddy surrounded
by a poloidal magnetic annulus, for which the magnetic helicity does not in general
vanish. The case of a toroidal flux tube contracting towards an axial flux tube aligned
on the axis of symmetry would be a special case, worth considering.
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